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ABSTRACT
Cooperative games provide an appropriate framework for
fair and stable resource allocation in multiagent systems.
This paper focusses on monotone cooperative games, a class
which comprises a variety of games that have enjoyed special
attention within AI, in particular, skill games, connectiv-
ity games, flow games, voting games, and matching games.
Given a threshold, each monotone cooperative game natu-
rally corresponds to a simple game. The core of a threshold
version may be empty, even if that is not the case in the
monotonic game itself. For each of the subclasses of mono-
tonic games mentioned above, we conduct a computational
analysis of problems concerning some relaxations of the core
such as the least-core and the cost of stability. It is shown
that threshold versions of monotonic games are generally
at least as hard to handle computationally. We also intro-
duce the length of a simple game as the size of the smallest
winning coalition and study its computational complexity
in various classes of simple games and its relationship with
computing core-based solutions. A number of computational
hardness results are contrasted with polynomial time algo-
rithms to compute the length of threshold matching games
and the cost of stability of matching games, spanning con-
nectivity games, and simple coalitional skill games with a
constant number of skills.
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1. INTRODUCTION
Fairness and stability of coalitions are fundamental issues

in multiagent systems and are typically modeled using the
framework of cooperative game theory. In a cooperative
game, the payoff or profit that each subset of agents can
achieve by cooperating is called the value of a coalition. The
crucial questions are which coalitions are stable and how the
coalitions should divide the payoff among their members.
Cooperative game theory has provided differing answers to
these questions in the form of solution concepts, some of
which are backed by appealing axiomatizations. An algo-
rithmic and computational lens on these solutions is critical
as large multiagent systems are deployed.

In this paper we examine monotone cooperative games
with transferable utility where the value of a superset of a
coalition is at least as large as the original coalition’s value.
Special focus is given to simple cooperative games where all
values are either zero or one. Cooperative games can be
unstable in the sense that the core is empty. We, therefore
examine relaxations of the core such as the least core and
the cost of stability.

Related Work.
The area of cooperative game theory has seen consider-

able growth over the last few decades [22]. Concepts from
cooperative game theory have been used in various combi-
natorial optimization problems in operations research and
multiagent systems which involve resource allocation among
multiple players [7]. The core was introduced by Gillies [18]
and led to the subsequent development of other solutions
such as the nucleolus [25]. We also consider the recently
introduced cost of stability (CoS) [5, 24] where a minimum
payment is made by an external agent to incentivize coop-
eration among the players.

Although algorithms to compute different solutions have
already been considered in the operations research litera-
ture, Deng and Papadimitriou [9] undertook one of the ear-
liest investigations of solution concepts in terms of compu-
tational complexity. Deng and Fang [8] surveyed the devel-
opments in algorithmic cooperative game theory in a recent
article.

Numerous classes of cooperative games have been the sub-
ject of recent research in multiagent systems: weighted vot-
ing games [13], skill games [3], multiple weighted voting
games [11], network flow games [4], and spanning connec-
tivity games [1]. Network flow games were first considered
by Kalai and Zemel [19], who also proved that network flow
games always have a non-empty core. Matching games have
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been widely studied in game theory (see, e.g., [20]). In this
paper, we also consider a natural variation called threshold
matching games.

Contribution.
We look at the correspondence between monotone coop-

erative game and threshold simple game versions. Well-
studied games such as threshold network flow games [4] fit
into this framework. It is shown that the threshold version
of a game is generally at least as hard to handle from a
computational point of view.

In Section 3, we present the length of a simple game, i.e.,
the size of the smallest winning coalition, as an important
game-theoretic property. If each player has a uniform cost
of being influenced, then influencing the winning coalition
with the smallest size is the most efficient way to influence
the overall decision. Similarly, in robotics it is desirable to
complete a task with a minimum number of robots. We
characterize the complexity of computing the length of well-
known simple games. Complexity of length is also conducive
to a better understanding of the (computational) disparity
between monotone games and their threshold versions.

In Section 4, a number of NP-hardness results are con-
trasted with polynomial time algorithms to compute the
length of threshold matching games and the cost of sta-
bility of matching games and spanning connectivity games.
Equivalence between simple coalitional skill games (SCSGs)
and a subclass of multiple weighted voting games is shown,
which helps answer algorithmic questions concerning SC-
SGs. Computing the worst excess of a least core payoff vec-
tor of a game efficiently is unclear even if a least core payoff
vector is given. We prove that an oracle to compute a least
core payoff vector for a simple game in a passer-consistent
representation can be used to compute the worst excess of a
least core payoff vector.

In Section 5, we furthermore present structural results of
the least core and the nucleolus payoffs of monotone coop-
erative games and conclude the paper with Section 6.

2. PRELIMINARIES
In this section, we define important classes of cooperative

games and introduce various solution concepts and funda-
mental computational problems associated with these con-
cepts.

2.1 Cooperative games
We begin with the formal definition of a transferable utility

cooperative game.

Definition 1. A cooperative game with transferable
utility is a pair (N, v) where N = {1, . . . , n} is a set of
players and v : 2N → R

+ is a characteristic or valuation
function that associates with each coalition S ⊆ N a pay-
off v(S) where v(∅) = 0.1 A game (N, v) is monotonic if
v(S) ≤ v(T ) whenever S ⊆ T .

Throughout the paper, when we refer to a cooperative
game, we assume such a cooperative game with transferable
utility. For the sake of brevity, we will also assume the set of
players to be given and sometimes refer to the game (N, v)
by v.

1Throughout the paper, we assume 0 ∈ R
+.

Definition 2. A simple game is a monotonic cooperative
game (N, v) with v : 2N → {0, 1} such that v(∅) = 0 and
v(N) = 1. A coalition S ⊆ N is winning if v(S) = 1 and
losing if v(S) = 0. A minimal winning coalition (MWC) of
a simple game v is a winning coalition in which defection
of any player makes the coalition losing. A simple voting
game can be represented by (N, W m), where W m is the set
of minimal winning coalitions.

For any monotone cooperative game, one can construct a
corresponding threshold game. Threshold versions are com-
mon in the multi-agent systems literature (see for instance
[4, 13]).

Definition 3. For each cooperative game (N, v) and
each threshold t ∈ R

+, the corresponding threshold game
is defined as the cooperative game (N, vt), where

vt(S) =

(
1 if v(S) ≥ t,

0 otherwise.

It is easily verified that, for any threshold t, if a game (N, v)
is monotone, so is its threshold version (N, vt), in which case
(N, vt) is a simple game.

2.2 Classes of Monotonic Games
We now review a number of specific classes of monotone

cooperative games. Here we adopt the convention that if
CLASS denotes a particular class of games, we have T-
CLASS refer to the class of threshold games corresponding
to games in CLASS, i.e., for every threshold t, (N, vt) is in
T-CLASS if and only if (N, v) is in CLASS.

Voting games are a widely used class of monotonic games.

Definition 4. A weighted voting game (WVG) is a sim-
ple game (N, v) for which there is a quota q ∈ R

+ and a
weight wi for each player i such that

v(S) = 1 if and only if
X
i∈S

wi ≥ q.

The WVG with quota q and weights w1, . . . , wn for the play-
ers is also denoted by [q; w1, . . . , wn], where we commonly
assume wi ≥ wi+1 for 1 ≤ i < n.

A multiple weighted voting game (MWVG) is the simple
game (N, v) for which there are WVGs (N, v1), . . . , (N, vm)
such that

v(S) = 1 if and only if vk(S) = 1, for all k with 1 ≤ k ≤ m.

We also denote the MWVG game composed of
(N, v1), . . . , (N, vm) by (N, v1 ∧ · · · ∧ vm).

Other important classes of games are defined on graphs.
Among these are spanning connectivity games, matching
games, network flow games, and graph games, where either
nodes or edges are controlled by players and the value of a
coalition of players depends on their ability to connect the
graph, enable a bigger flow, or obtain a heavier matching or
edge set.

Definition 5. For each connected undirected graph
(V, E), we define the spanning connectivity game (SCG) as
the simple game (N, v) where N = E and for all S ⊆ E,
v(S) = 1 if and only if there exists some E′ ⊆ S such that
T = (V, E′) is a spanning tree.
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Definition 6. Let G = (V, E, w) be a weighted graph.
The matching game corresponding to G is the cooperative
game (N, v) with N = V and for each S ⊆ N , the value
v(S) equals the weight of the maximum weighted matching
of the subgraph induced by S.

Deng and Papadimitriou [9] introduced graph games,
which are likewise defined on weighted graphs [9].

Definition 7. For a weighted graph (V, E, w), the graph
game (GG) is the cooperative game (N, v) where N = V
and for S ⊆ N , v(S) is the weight of edges in the subgraph
induced by S. In this paper, we assume that the graph corre-
sponding to a graph game has only positive edge weights and
denote such graph games by GG+.

A flow network (V, E, c, s, t) consists of a directed graph
(V, E), with capacity on edges c : E → R

+, a source vertex
s ∈ V , and a sink vertex t ∈ V . A network flow is a function
f : E → R

+, which obeys the capacity constraints and the
condition that the total flow entering any vertex (other than
s and t) equals the total flow leaving the vertex. The value of
the flow is the maximum amount flowing out of the source.

Definition 8. For a flow network (V, E, c, s, t), the as-
sociated network flow game (NFG) is the cooperative game
(N, v), where N = E and for each S ⊆ E the value v(S)
is the value of the maximum flow f with f(e) = 0 for all
e ∈ E \ S.

Finally, we define the class of skill games, which were re-
cently introduced by Bachrach and Rosenschein [3]. The
intuition underlying skill game is that there is a task to be
performed requiring skills σ1, . . . , σk. Each agent has par-
ticular skills. A coalition that can perform the task achieves
value 1 and a coalition that cannot perform the task gets
value 0.

Definition 9. Let N = {1, . . . , n} and Σ = {σ1, . . . , σk}
be a set of players and a set of skills, respectively, such that
each player has a set of skills Σi ⊆ Σ. Given a task re-
quiring all of the skills in Σ for its performance, the simple
coalitional skill game (SCSG) associated with it is the simple
game (N, v) such that for all coalitions S ⊆ N ,

v(S) = 1 if and only if
[
i∈S

Σi = Σ.

2.3 Cooperative Solutions
A solution for a cooperative game consists of a distribu-

tion of the values of the coalitions that form. In this paper,
we assume that the grand coalition consisting of all players
always forms. Accordingly, a solution consists of a distri-
bution of the value of the grand coalition over the players.
Thus, formally, a solution associates with each cooperative
game (N, v) a set of payoff vectors (x1, . . . , xn) ∈ R

N such
that

P
i∈N xi = v(N), where xi denotes player i’s share

of v(N). As such, solution concepts formalize the notions
of fair and stable payoff vectors. In what follows, we use
notation similar to that of Elkind et al. [13].

Given a cooperative game (N, v) and payoff vector x =
(x1, ..., xn), the excess of a coalition S under x is defined by

e(x, S) = x(S) − v(S),

where x(S) =
P

i∈S xi. We are now in a position to define
one of the most fundamental solution concepts of coopera-
tive game theory, viz., the core.

Definition 10. A payoff vector x = (x1, . . . , xn) is in the
core of a cooperative game (N, v) if and only for all S ⊂ N ,
e(x, S) ≥ 0.

A core payoff vector guarantees that each coalition gets at
least what it could gain on its own. The core is a desirable
solution concept, but, unfortunately it is empty for many
games. Games which have a non-empty core are called bal-
anced. The possibility of the core being empty led to the
development of the ε-core [27] and the least core [21].

The excess vector of a payoff vector x, is the vec-
tor (e(x, S1), ..., e(x, S2n)) where e(x, S1) ≤ e(x, S2) ≤
e(x, S2n). We denote the distinct values in the excess vec-
tor by −ε1(x, v),−ε2(x, v), . . . ,−εm(x, v), where −εi(x, v) <
−εj(x, v) for i < j.

Definition 11. For ε > 0, a payoff vector vector x is in
the ε-core if for all S ⊂ N , e(x, S) ≥ −ε. The payoff vector x
is in the least core if it is in the ε-core for the smallest ε for
which the ε-core is non-empty. We will denote by −ε1(v),
the worst excess of any least core payoff vector of (N, v).

It is easy to see from the definition of the least core, that
it is the solution of the following linear program (LP):

min ε
s.t. x(S) ≥ v(S) − ε for all S ⊂ N,

xi ≥ 0 for all i ∈ N,P
i=1,...,n xi = v(N) .

(1)

The nucleolus is a special payoff vector which is in the
core if the core exists and is otherwise a member of the least
core.

Definition 12. A payoff vector x such that xi ≥ v({i})
for all i ∈ N and x has lexicographically the largest excess
vector is called the nucleolus.

The nucleolus is unique and always exists as long as
v(S) = 0 for all singleton coalitions [25].

If the core of a coalitional game is empty, it is hard to en-
sure that players do not break off from the grand coalition to
maximize their payoff. One recent proposal [5] to take care
of this problem is the idea of an external authority paying a
supplemental payment to incentivize the players to cooper-
ate in a stable manner. This payment is denoted by �. We
use the same definitions as introduced by Bachrach et al. [5].

Definition 13. For a given coalitional game G = (N, v)
and a payment � ∈ R

+, the adjusted coalitional game
G(�) = (N, v′) is exactly like (N, v) except that v′(N) =
v(N) + �. Any payoff vector which is in the core of
G(�) = (N, v′) is a superimputation. The cost of stabil-
ity (CoS) of a game is the minimum supplemental payment
CoS(G) such that G(CoS(G)) has a nonempty core.

If the core of a game is nonempty, then, clearly, the CoS
is 0. It is known that computing the CoS is NP-hard for
WVGs [5] and T-NGFs [24]. It is easy to see that CoS(G) is
the solution of the following LP with an exponential number
of constraints:

min �
s.t. x(S) ≥ v(S) for all S ⊂ N ,

xi ≥ 0 for all i ∈ N,P
i=1,...,n xi = v(N) + � .

(2)
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2.4 Computational Problems
For any solution concept X, we consider the following

standard computational problems:

• IN-X: given a cooperative game (N, v) and payoff vec-
tor p, check whether p is in solution X of (N, v).

• CONSTRUCT-X: given a cooperative game (N, v),
compute a payoff vector p, which is in solution X of
(N, v).

• CoS: given a cooperative game (N, v), compute
CoS((N, v)).

• SUPERIMP: given cooperative game G = (N, v),
supplement payment �, and super-imputation
(x1, . . . , xn) in G(�), check whether x ∈
CORE(G(�)).

3. LENGTH OF SIMPLE GAMES
The length of a simple game is the size of the smallest

winning coalition. In another context, a related concept has
been considered in the electrical engineering and threshold
logic literature [23]. The length is an important indicator
of a simple voting game which signifies the ease with which
the status quo can be changed. Complexity of the length of
a simple game is also related to the complexity of bribery,
manipulation and control which has been an active area of
research in social choice theory [14]. For example, if each
player has a uniform cost of being influenced, then influenc-
ing the winning coalition with the smallest size is the most
efficient way to influence the overall decision. Similarly, in
a network setting, a strategic agent with limited resources
would like to control the minimum number of edges or nodes
which can still get the job done. As we will see in Section 4,
length is an important property of simple games with a bear-
ing on the complexity of solutions. We will denote the prob-
lem of computing the length of a game by LENGTH and the
length of game (N, v) by l(v).

For a simple game v represented by (N, W m), l(v) can be
computed in linear time by scanning the winning coalitions
and identifying the smallest k such that coalition S is in W m

and |S| = k. The length of an SCG is always n−1. Similarly,
the length of a WVG can be computed in polynomial time by
iteratively adding players in the order of decreasing weights
until the summed weight exceeds the quota. This greedy
method also identifies the smallest winning coalition.

Proposition 1. Computing the length of an MWVG is
NP-hard even if the game is composed of two WVGs.

Proof. We provide a reduction from a special case
of the minimization version of the multidimensional 0-1
knapsack problem (MKP) [16].

Name: MIN-MKP
Instance: A collection of n items and m knapsacks, where
each knapsack i should have at least di capacity filled and
the jth item has corresponding cost cj and requires aij

units of resource consumption.
Output: Minimize

Pn
j=1 cjyj such that

Pn
j=1 aijyj ≥ di,

i ∈ M = {1, 2, . . . m} and yj ∈ {0, 1}, j ∈ N .

Dinic and Karzanov [10] proved that even the special case
of MIN-MKP where m = 2 and cj = 1 for all j =∈ {1, . . . , n}

is NP-hard. For any such restricted instance of MIN-MKP,
construct a MWVG with n players and m WVGS where for
i = 1, . . . , m the ith MWVG is [di; ai1, . . . , ain]. Then the
objective of MIN-MKP is less than x if and only if l(v) <
x.

Proposition 2. Computing the length of a SCSG is NP-
hard even if each skill is owned by exactly two players or if
each player has three or fewer skills.

Proof. We provide a reduction from Vertex Cover. Con-
sider a graph (V, E) where V = {1, . . . , n}. Denote the
neighbours of vertex i by D(i). Based on the graph G, define
a SCSG where Σ = E, N = V where player i corresponds
to vertex i and for any player i, Σi = {(i, j) | j ∈ D(i)}. A
coalition S is winning if and only if

S
i∈S Σi = Σ which is

possible if and only if the set of vertices corresponding to C
is a vertex cover of (V, E).

Similarly, it can be shown that computing the length of the
SCSG is equivalent to solving the Minimum Set Cover prob-
lem which is NP-complete even if each set has size 3.

For computing the length of threshold matching games,
greedy approaches do not work and the winning coalition
with the smallest cardinality need not be a subset of the
maximum matching of the whole graph. Nevertheless, the
length of threshold matching games can be computed in
polynomial time.

Proposition 3. There exists a polynomial-time algo-
rithm to compute the smallest winning coalition of the
threshold matching game.

Proof. Take weighted graph G = (V, E, w). Suppose we
want to compute the maximum matching of size s. Then
transform graph G into G′ by creating j = |V | − 2s new
nodes V ′ = {v′

1, . . . , v
′
j} and joining each node in V ′ to each

node in V with an edge of weight W =
P|E|

i=1 w(ei). Let
M ′ be the maximum (perfect) matching of G′. Then M =
M ′ ∩ E is the maximum matching of G with size s.

Use the procedure outlined above for s = 1, 2, . . . , |V |/2�
and stop when w(M ′ ∩E) ≥ k. Then 2s is the length of the
game and V (M) is the smallest winning coalition.

By a reduction from the NP-hard Dense k-Subgraph Prob-
lem [15], it can be shown that computing the length of
threshold versions of positive graph games T-GG+ is NP-
hard. Similarly, computing the length of T-NFGs is NP-
hard. This follows from an NP-hard restricted version of
the MINIMUM EDGE COST-FLOW problem [17].

Definition 14. For an unweighted graph G = (V, E),
the independent set game(ISG) is a cooperative game (N, v)
where N = E and for S ⊆ E, v(S) is the size of the maxi-
mum independent set of the graph restricted to vertices of S.

ISGs are examples of monotone cooperative games for
which computing the value of a coalition is NP-hard. Com-
puting the length of any threshold monotone cooperative
game based on an NP-hard combinatorial optimization do-
main is NP-hard. Take the example of threshold indepen-
dent set games (T-ISG). If there is an oracle to compute the
length of a T-ISG, then it can be used to solve the NP-
hard maximum independent set problem. Use the oracle
to compute the smallest winning coalition of graph G with
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Game class Complexity of LENGTH

WVG P
T-Matching P
T-NFG NP-hard
MWVG NP-hard
SCSG NP-hard
T-GG+ NP-hard

Table 1: Complexity of LENGTH

gradually increasing threshold k until no winning coalition
is returned. The size of the maximum independent set is
then k − 1.

Table 1 summarizes the complexity of LENGTH for dif-
ferent game classes. We will connect these results to the
complexity of computing least core payoff vectors and the
CoS in Proposition 7 and Observation 2.

4. LEAST CORE AND COS
For a given payoff vector, computing the worst excess is

a non-trivial task. Deng and Fang [8] note that “the most
natural problem is how to efficiently compute the value ε1 for
a given cooperative game. The catch is that the computation
of ε1 requires one to solve a linear program with [an] expo-
nential number of constraints.” It is not clear whether the
least core worst excess can be computed efficiently even if a
least core payoff vector is given. However, we show that any
oracle that can be used to compute a least core payoff vec-
tor for passer-consistent simple games, can also be used to
compute the worst excess for the least core payoff vector. A
class of simple games is passer-consistent if, for any simple
game contained in the class, the game with a newly added
passer is also contained in the class. WVGs, MWVGs, and
SCSGs are examples of passer-consistent representations.

Let (N, v) be a simple game and x be any payoff vector of
(N, v). We will denote 1 − ε1(x, v) by δ1(x, v) and 1− ε1(v)
by δ1(v). The value δ1(x, v) is the payoff of any coalition
with the worst excess.

Lemma 1. Let (N, v) be a simple game and x be any pay-
off vector of (N, v) such that x(N) = 1. Consider the game
(N ∪{n+1}, v′) which is obtained by adding a passer player
n + 1 to the game (N, v). For any payoff vector x′ for
(N ∪ {n + 1}, v′), if x′

n+1 = a and x′
i = (1− a)xi for i ∈ N ,

then

1. δ1(x
′, v′) = Min(a, (1 − a)δ1(x, v)).

2. If x′ is a least core payoff vector of (N ∪ {n + 1}, v′),
then a = (1 − a)δ1(x, v) and x′

n+1(v
′) = δ1(v

′).

Proof. Since {n + 1} is a winning coalition, the worst
excess of {n + 1} for payoff vector x′ is a − 1 which implies
that δ1(x

′, v′) ≤ a.
For S ⊆ N , any coalition S ∪ {n + 1} is not a minimal

winning coalition. Therefore, to examine other coalitions
with the worst excess in (N ∪ {n + 1}, v′) for payoff vector
x′, we look at subsets of N . The worst payoff for winning
coalitions among N is then (1−a)δ1(x, v). This implies that
δ1(x

′, v′) ≤ (1 − a)δ1(x, v). Since all subsets of N ∪ {n + 1}
have been considered, δ1(x

′, v′) = Min(a, (1 − a)δ1(x, v)).
We now prove that payoff vector x′ is a least core payoff

vector of (N ∪ {n + 1}, v′), only if a = (1 − a)δ1(x, v) and
x′

n+1(v
′) = δ1(v

′).

The value δ1(x
′, v′) is maximized only when a = (1 −

a)δ1(x, v). Also, δ1(x
′, v′) is maximum only when the op-

timum payoff δ1(v
′) is given to player n + 1, i.e., when

x′
n+1 = a = δ1(v

′).

Proposition 4. An oracle to compute a least core payoff
vector for a simple game in any passer-consistent represen-
tation can be used to compute the worst excess of a least core
payoff vector.

Proof. Consider a game (N, v) in a passer-consistent
representation. Use the oracle to compute x = (x1, . . . , xn),
a least core payoff vector of (N, v).

Denote the worst excess (as yet unknown) of x by −ε1(v)
and 1−ε1(v) by δ1(v). Then, we know that δ1(x, v) = δ1(v).
Form a new game (N ∪{n+1}, v′) by adding a passer player
n + 1 to the game such that v′({n + 1}) = 1 and v′(S) = 1
if and and only if v(S) = 1 for all S ⊆ N . Since (N, v) is
in a passer-consistent representation, (N ∪ {n + 1}, v′) can
also be represented by a passer-consistent representation.

Use the oracle to compute x′ = (x′
1, . . . x

′
n+1), a least core

payoff vector of (N ∪ {n + 1}, v′). From Lemma 1, we know
that x′

n+1(v
′) = δ1(v

′) and x′
n+1 = (1−x′

n+1)δ1(x, v)). This
means that,

1 − ε1(v) = δ1(v) =
x′

n+1(v
′)

1 − x′
n+1(v

′)
(3)

From (3), we know that ε1(v) = 1−δ1(v) can be computed
by adding a passer to (N, v) to form game (N ∪ {n + 1}, v′)
and then computing x′

n+1(v
′).

Bachrach et al. [6] focus on the CoS of WVGs and note
that “a natural research direction is to study the cost of sta-
bility in other classes of games.” We now present algorithms
to compute the CoS of SCGs and general matching games.

Proposition 5. For SCGs, there exists a polynomial-
time algorithm to compute SUPERIMP and CoS.

Proof. We consider a superimputation (x1, . . . , x|E|)
such that x(E) = 1 + �. For a candidate solution x =
(x1, . . . , x|E|), we find in polynomial time the minimum
spanning tree T of the graph Gx. If x(T ) ≥ 1, then x(S) ≥ 1
for all S ⊂ E and x is a superimputation. If x(T ) < 1, then
x is not a superimputation.

The size of the linear program (2) is exponential in the
size of the graph G, with an inequality for every subset of
edges. However, this linear program can be solved using the
ellipsoid method and a separation oracle, which verifies in
polynomial time whether a solution is feasible or returns a
violated constraint [26]. We see that our solution to SUPER-
IMP for an SCG provides a separation oracle to compute
CoS for the same SCG.

Proposition 6. For matching games, there exists a
polynomial-time algorithm to compute SUPERIMP and
CoS.

Proof. We denote weighted graph G = (N, E, w) and
its corresponding matching game also by G. The CoS
LP can be solved using the ellipsoid method and a poly-
nomial time separation oracle which for any payoff vector
x = (x1, . . . , xn) and ε > 0, returns “yes” if the worst
excess of G with respect to x is more than −ε and oth-
erwise returns the violated constraint. We construct the

1021



separation oracle as follows. For a payoff vector x and

G = (N, E, w), the graph G
′
x is (N, E, w′), where for each

edge (i, j), w′((i, j)) = w((i, j))− xi − xj . For any coalition
S, −e(x, S) is equal to the weight of a maximum matching

of G
′
x restricted to nodes in S. Therefore, it is easy to see

that for matching game G, if the weight of the maximum

matching of G
′
x is a positive value ε1, then, the worst excess

of x is −ε1. Since a maximum weighted matching can be
computed in polynomial time, one can compute the worst
excess −ε1 for payoff vector x and if ε1 > ε, then the maxi-

mum matching of G
′
x provides the violated constraint. The

separation oracle can also be used to solve SUPERIMP.

Resnick et al. [24] mention the relation between the CoS
and the least core as an interesting question. The follow-
ing observation highlights the similarity of the computa-
tional approach to compute both solutions. The observation
stems from the the similarity of LP (1) for the least core and
LP (2).

Observation 1. For a monotone cooperative game
(N, v), if the separation oracle O for a least core LP can
be constructed and be solved in polynomial time, then for
(N, v), SUPERIMP and CoS are in P. The reasoning for this
is as follows. Consider payoff vector (x1, . . . , xn). Then, or-
acle O can check in polynomial time whether x(S)− v(S) ≥
−ε for all S ⊂ N , or find a violated constraint otherwise.
Then O can be used to solve SUPERIMP for (N, v). Also,
O can be used as a separation oracle to solve LP (2).

Proposition 7. If computing the length of a simple game
(N, v) is NP-hard, then IN-ε-CORE for (N, v) is NP-hard.

Proof. Consider the payoff vector x = ( 1
n
, . . . , 1

n
) for

(N, v). Denote the length of (N, v) by l(v). The payoff of

the smallest winning coalition is l(v)
n

. The worst excess of

(N, v) for payoff vector x is l(v)
n

− 1.

The payoff vector x is in the ε-core if and only if l(v)
n

≥ 1−
ε. If there is an oracle to compute IN-ε-CORE in polynomial
time, then by using different values of ε, binary search can be
used to compute the l(v). Therefore computing l(v) reduces
to solving IN-ε-CORE. Since l(v) is NP-hard to compute,
IN-ε-CORE is NP-hard.

One would expect that if IN-CORE is in P then SUPER-
IMP is in P. This is because for each coalition S ⊂ N ,
we need to check if x(S) ≥ v(S). However, for WVGs, IN-
CORE is in P but SUPERIMP is coNP-complete. More-
over, due to the supplemental payment, the game does not
remain a simple game anymore.

Observation 2. If IN-ε-CORE is NP-hard and unless
P = NP, then there is no polynomial time separation or-
acle to solve the least core LP or the CoS LP. The reason
is as follows. A separation oracle for solving the least core
LP is a polynomial time algorithm which verifies in polyno-
mial time whether a solution is feasible or returns a violated
constraint [26]. Such an oracle can be used to solve IN-ε-
LEAST-CORE which only requires a yes/no output and not
the violated constraint.

As we saw in Section 3, for many important simple coali-
tional games such as SCSGs, computing the length is NP-
hard. Proposition 7 and Observation 2 imply that if com-
puting the length of a simple game is NP-hard and unless

P = NP, then there is no polynomial time separation oracle
to solve the least core LP. This means that, if a polynomial
time algorithm does exist, one needs to make extra use of
the combinatorial structure of the underlying game. For the
threshold matching games, although the length can be com-
puted in polynomial time, solving IN-ε-CORE is NP-hard.

Proposition 8. For threshold matching games, IN-ε-
CORE is NP-hard.

Proof. Denote by WORST-EXCESS the problem of
computing the worst excess of a cooperative game with re-
spect to a given payoff vector x. We provide a reduction from
the NP-hard Minimization Knapsack Problem (MinKP) to
WORST-EXCESS for threshold matching games. Recall,
that MinKP is the problem of minimizing

Pn
i=1 piyi such

that
P

wiyi ≥ d where yi ∈ {0, 1} for i = 1, . . . , n.
Let P =

Pn
i=1 pi. For an instance I of MinKP, denote

the solution by s∗. For I, we can construct an instance of
WORST-EXCESS for threshold matching game GI . Game
GI consists of threshold d and weighted graph (V, E, w)
where |V | = 2n, |E| = n and E = {(v2i−1, v2i) | i =
1, . . . , n} such that w((v2i−1, v2i)) = wi. The payoff vector
x = (x1, . . . , x2n) for vertices v1, . . . , v2n is x2i−1 = x2i =
pi/2P for all i ∈ N . Let −ε1 be the worst excess of matching
game GI with respect to x. Then s∗ = (1 − ε1)P . There-
fore WORST-EXCESS is NP-hard for threshold matching
games. Since an oracle to solve IN-ε-CORE can be used
to solve WORST-EXCESS, we see that IN-ε-CORE is NP-
hard for threshold matching games.

Proposition 9. Computing the cooperative game solu-
tions of threshold matching games is at least as hard as com-
puting them for WVGs.

Proof. Take any WVG vI = [q; w1, . . . , wn]. Create
a corresponding threshold matching game GI . Game GI

consists of threshold q and weighted graph (V, E, w) where
|V | = 2n, |E| = n and E = {(v2i−1, v2i) | i = 1, . . . n} such
that w((v2i−1, v2i)) = wi. Then if there an oracle to com-
pute solution S, for GI in polynomial time, then it can be
used to compute S for vI in polynomial time.

As a corollary, for threshold matching games, computing
the cooperative solutions Shapley values and Banzhaf values
is #P-complete and computing the nucleolus, the CoS, or an
element in the least core is NP-hard.

By using the same reduction, Proposition 9 also applies
to the threshold version of graph games (T-GG+). Propo-
sition 9 shows that threshold matching games are harder to
deal with than WVG but easier to handle than MWVGs for
which even computing the length is NP-hard.

Proposition 10. A SCSG with n players and k skills is
equivalent to a MWVG with n players and k constituent
WVGs, each with quota one and weights zero or one.

Proof. Consider SCSG (N, v) with n players and k skills.
Then for j = 1, . . . , k and for each skill σj , construct a corre-
sponding WVG (N, vj) = [qj ; wj

1, . . . , w
j
n] where qj = 1 and

for i = 1, . . . , n, wj
i = 1 if i has skill sj and zero otherwise.

Denote the MWVG (N, v1 ∧ · · · ∧ vk) by (N, v′). Then for
any coalition S ⊆ N , v(S) = 1 if and only if v′(S) = 1. The
same idea is used to construct a reduction in the opposite
direction.
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Corollary 1. For a SCSG with a constant number of
skills, both computing the CoS and computing the nucleolus
is in P.

Proof. Elkind and Pasechnik [12] outlined an algorithm
for computing the nucleolus of a MWVG which is polynomial
in n and the sum of the weights of the WVGs. A SCSG with
a fixed number of skills can be reduced to its corresponding
MWVG. This MWVG clearly has weights polynomial in n.
It follows that computing the nucleolus (which is a least core
payoff vector) of SCSGs with a constant number of skills is
in P. From Observation 1, we know that the separation
oracle for the least core linear program LP1 (defined by
Elkind and Pasechnik [12]) can be used for the CoS LP.

5. STRUCTURE OF LEAST CORE PAY-
OFF VECTORS

In this section, we present some general structural results
which apply to least core payoff vectors of monotone co-
operative game or in other cases to general simple games.
Such results shed more light on stability-based solutions of
monotone cooperative games.

Proposition 11. For any monotone cooperative game
(N, v), suppose that x = (x1, . . . , xn) is an element in the
least core, where the minimum excess is −ε. Then for any
player i ∈ N there exists a coalition T such that i ∈ T and
e(x, T ) = −ε.

Proof. Let A be the set of players such that for every
j ∈ A, we have that j is contained in some coalition M with
e(x, M) = −ε. Let P be the set of those coalitions which
get an excess of −ε. Consider a player i ∈ N \ A.

Let xi = 0. If coalition S ∈ P , then we consider the
coalition S ∪ {i}. If v(S ∪ {i}) = v(S), then i ∈ A. If
v(S ∪ {i}) > v(S), then e(x, S ∪ {i}) < −ε, which is a con-
tradiction.

Now consider the case when xi > 0. Let δ be half of
the minimum of the non-zero differences between successive
components of the excess vector of x. If there exists a coali-
tion S ∈ P such that x(S ∪ {i}) − v(S ∪ {i}) < −ε, then
this is a contradiction. If there exists a coalition S ∈ P such
that x(S ∪ {i}) − v(S ∪ {i}) = −ε, then i ∈ A. If there
exists no coalition S ∈ P such that x(S∪{i})−v(S∪{i}) ≤
−ε, then we can obtain a new payoff vector y such that

yi = xi − Min(xi, δ), and yj = xj + Min(xi,δ)
|A| for j ∈ A, and

yk = xk for k /∈ A ∪ {i}. Since the smallest excess for y
is more than −ε, this means that x is not in the least core
which is a contradiction.

A player i in a simple game (N, v) is a vetoer if v(N\{i}) =
0.

Proposition 12. Let (N, v) be a simple game with no
vetoers and let x = (x1, . . . , xn) be a member of the least core
of (N, v). Then, there is no player which is present in every
coalition which gives the minimum excess for imputation x.

Proof. Let P be the set of coalitions which get the
minimum excess −ε. We already know that every player
is a member in at least one element of P . Let δ =
min1≤i<m((εi+1−εi)/2) and assume there is a player j which
is a member of each coalition in P . Then there are three
possibilities:

1. There exists a player i other than j such that xi > 0
and i is not in every member of P . Since j features in all
coalitions in P , then player a i other than j such that xi > 0
can donate δ

n
weight to j which increases the payoffs of all

coalitions in P which do not include i. This is a contradic-
tion as x is a least core payoff vector.

2. Any player i other than j such that xi > 0 is in every
member of P . Let the set of such players be J ′. Then we
prove that j is a vetoer which is equivalent to saying that
v(N \ {j}) = 0. For a contradiction, assume that v(N \
{j}) = 1. Then x(N \ {j}) = x(J ′). Since we have that
J ′ ⊆ S for all S ∈ P and since v(N \{j}) = 1, we know that
N \ {j} ∈ P . This is a contradiction as j is in each coalition
in P .

3. There exists no player i other than j such that xi > 0.
But if this happens, xj = 1. This implies x(N \ {j}) = 0.
Also v(N \ {j}) = 0 because if v(N \ {j}) = 1, then N \ {j}
has the minimum possible excess but does not include j.
Therefore, there exists a coalition N \ {j} which also gets
the worst excess (0 in this case).

We call a payoff vector nucleolus-like if it is a least core
payoff vector for which the number of coalitions with the
worst excess is the minimum possible. For a game (N, v)
and a payoff vector vector x, the set of coalitions that get
the ith distinct worst excess −εi(x, v) will be denoted by
Ai

x(v).

Proposition 13. For any monotone cooperative game
(N, v) and nucleolus-like payoff vector x, assume that there
exists a player i such that for all S ∈ A1

x(v), we have
that i ∈ S. Then, for player j other than i, either for all
S ∈ A1

x(v), j ∈ S, or we have that xj = 0.

Proof. Assume that there exists a coalition S ∈ A1
x(v)

such that player j /∈ S. Let δ = (ε1−ε2)/2. Then if j donates
δ amount of its payoff to i, this reduces the number of −ε1-
coalitions. This cannot be since x is nucleolus-like.

6. CONCLUSIONS AND DISCUSSION
In this paper, we consider a range of monotonic cooper-

ative games. The paper also examines the length of simple
games, which is the size of the smallest winning coalition.
We find that the complexity of computing the length de-
pends on the representation.

It is seen that threshold versions of cooperative games are
generally less stable and computationally harder to handle.
For example, NFGs are balanced whereas a T-NFG has an
empty core if it contains no vetoers. Also, computing the
CoS of matching games is in P but computing the CoS of
threshold matching games is NP-hard. Tables 1 and 2 show
that the following classes of games generally get increasingly
harder to handle computationally: GG+, NFGs, matching
games, WVGS, threshold matching games, T-GG+, T-NFG,
MWVGs. The complexity of computing the CoS of SCSG
with a variable number of skills is open.

There may be multiple ways of distributing the payoffs af-
ter the cost of stability has been paid. Our reflections lead us
to propose a natural and desirable solution for any coopera-
tive game called the super-nucleolus. The super-nucleolus is
the nucleolus of a cooperative game G if the core is nonempty
and is the nucleolus of G(CoS(G)) if the core of G is empty.
For certain balanced subclasses of games such as assignment
games (matching games on bipartite graphs), computing the
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least core CoS nucleolus

GG+ P[9] P[9] P[9]
SCG P P P [2]
SCSG P P P
(fixed #skills)
NFG P [19] P[19] ?
Matching P [20] P ?
WVG NP-hard [13] NP-hard [13] NP-hard [13]
T-Matching NP-hard NP-hard NP-hard
T-NFG NP-hard [24] NP-hard [24] NP-hard
T-GG+ NP-hard NP-hard NP-hard

Table 2: Summary of results

nucleolus is easier than for more general games. Since the
core of G(CoS(G)) is always nonempty, it will be interest-
ing to compare the complexity of computing the nucleolus
of G(CoS(G)) and that of G.

It will be interesting to check whether computing the CoS
and computing a least core payoff vector have the same com-
plexity for any game. Longstanding open problems include
the complexity of computing the nucleolus of general NFGs
and matching games.
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